
STA238 Tutorial 8

Luis Ledesma

2023-03-22

1 Announcements

• You can upload your work on Crowdmark from the end of the tutorial session to 5pm Friday of that
week.

• All questions must be solved using RStudio.

2 Recall: Last tutorial

Last tutorial: We fitted a linear regression model to a dataset, and we interpreted some fitted values and
derived statistics from the model, along with visualizations of the data.

Main takeaways:

1. The function lm() will be used to fit linear regression models, and with summary() one can extract the
parameter estimates, along with their associated standard errors.

2. We obtained parameter estimates from the fitted model ŷ = β̂0+β̂1x, and the coefficient of determination
R2.

3. We visualized the data and fitted a least squares line on top of it.

3 Tutorial activity

For this tutorial, we want to:

1. Carry out more regression model fitting.

2. Understand the hypothesis tests associated with regression models, along with their associated test
statistics and rejection regions.

3. Compute confidence intervals for the parameter fits.

4. Carry out linear regression by hand for simpler models.

3.1 Predicting runoff volume using rainfall volume

3.1.1 Visualizing the dataset

We will code the dataset as follows:
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x <- c(5, 12, 14, 17, 23, 30, 40, 47, 55, 67, 72, 81, 96, 112, 127)
y <- c(4, 10, 13, 15, 15, 25, 27, 46, 38, 46, 53, 70, 82, 99, 100)
dataQ1 = data.frame(x = x, y=y)

The independent variable will be rainfall volume (in m3), and we want to determine whether it is a predictor
of runoff volume (in m3) for a particular location. Our proposed model will be:

ŷ = β̂0 + β̂1x

Using ggplot2, one can visualize the data:
ggplot(dataQ1, aes(x, y)) +

geom_point()
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It does seem reasonable that linear regression can be used to fit the data.

3.1.2 Model fits, point estimates and coefficients of determination

Now, to look at point estimates of the data:
model1 <- lm(y ~ x, data = dataQ1)
summary(model1)

##
## Call:
## lm(formula = y ~ x, data = dataQ1)
##
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## Residuals:
## Min 1Q Median 3Q Max
## -8.279 -4.424 1.205 3.145 8.261
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.12830 2.36778 -0.477 0.642
## x 0.82697 0.03652 22.642 7.9e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.24 on 13 degrees of freedom
## Multiple R-squared: 0.9753, Adjusted R-squared: 0.9734
## F-statistic: 512.7 on 1 and 13 DF, p-value: 7.896e-12
model1

##
## Call:
## lm(formula = y ~ x, data = dataQ1)
##
## Coefficients:
## (Intercept) x
## -1.128 0.827

The estimate of the intercept will be β̂0 = −1.128 and the estimate of the slope term will be β̂1 = 0.827. To
determine the point estimate of the true average of runoff volume when rainfall volume is 50:

ŷ = −1.128 + 0.827 · 50

Alternatively, one could use predict(model1,newdata=c(50)).

The point estimate of the standard deviation will be the residual standard error, 5.24 (from the
model output). Similarly, the coefficient of determination R2 explains the proportion of variability
in y due to x, R2 = 0.9753.

3.2 Computing linear regression estimates and confidence intervals manually

Note: While all of the following calculations can be done in R, you have to solve this problem
by hand. You can use R to verify your answers.

The method of least squares will give the following estimates for β̂0, β̂1:

β̂1 = Sxy
Sxx

β̂0 = y − β̂1x

We need to compute:

Sxx =
∑

x2
i −

(
∑
xi)2

n
= 111− 232

7 = 35.428

Sxy =
∑

xiyi −
(
∑
xi)(

∑
yi)

n
= 81− 23 · 18

7 = 21.857
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y =
∑
yi

7 = 18
7 = 2.571

x =
∑
xi

7 = 23
7 = 3.286

Then, we can plug these into:

β̂1 = Sxy
Sxx

= 21.857
35.428 = 0.617

β̂0 = y − β̂1x = 2.571− (0.617 · 3.286) = 0.544

Then, the least squares regression line will be:

ŷ = 0.544 + 0.617x

3.2.1 Hypothesis tests for regression coefficients

Suppose that we want to test whether the data provides sufficient evidence that x is a significant predictor of
y. Using our model, the hypothesis test will be:

H0 : β1 = 0 Ha : β1 6= 0

And, the test statistic will be:

t = β̂1

Sβ̂1

Where Sβ̂1
= σ̂√

Sxx
. Under the null hypothesis, the above test statistic will be a t-distribution

with n− 2 = 7− 2 = 5 degrees of freedom .

3.2.2 Computing the test statistic

For the above test statistic:

σ̂2 = SSE

n− 2 SSE = Syy −
S2
xy

Sxx

We need to compute:

Syy =
∑

y2
i −

(
∑
yi)2

n
= 62− 182

7 = 15.714

Plugging in the values:

SSE = Syy −
S2
xy

Sxx
= 15.714− 21.8572

35.428 = 2.23
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σ̂2 = SSE

n− 2 = 2.23
5 = 0.446⇒ σ̂ =

√
0.446 = 0.6678

Sβ̂1
= 0.6678√

35.428
= 0.1122

Then, the computed test statistic will be:

tc = 0.617
0.1122 = 5.5

Recall that under the null hypothesis, the test statistic follows a t-distribution with 5 degrees of freedom.

3.2.3 Carrying out the hypothesis test

As the hypothesis test is two-sided, the rejection region will be RR = {|tc| > t0.025,df=5}. Since t0.025,5 = 2.571:

tc = 5.5 > 2.571

Then, there is enough evidence to reject H0, which implies that there is a linear relationship
between x and y.

3.2.4 Computing confidence intervals

The 95% confidence interval for β̂1 will be:

β̂1 ± t0.025,5 · Sβ̂1
= 0.617± 0.288 = (0.329, 0.905)
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